Sign In  |  Register  |  About Santa Clara  |  Contact Us

Santa Clara, CA
September 01, 2020 1:39pm
7-Day Forecast | Traffic
  • Search Hotels in Santa Clara

  • CHECK-IN:
  • CHECK-OUT:
  • ROOMS:

United States Assessment of CO2 Emissions Life Cycle in the Fuel Cell Electric Truck Sector 2024: Investigating the Carbon Emission Implications of FCETs, Particularly with Focus on Hydrogen - ResearchAndMarkets.com

The "Assessment of CO2 Emissions Life Cycle in the Fuel Cell Electric Truck Sector, United States" report has been added to ResearchAndMarkets.com's offering.

This study underscores the urgency of transitioning to cleaner hydrogen production methods and optimizing vehicle manufacturing to achieve substantial CO2 emission reductions in the trucking sector.

In this study, the publisher offers a comprehensive exploration of the carbon dioxide (CO2) trail of a fuel cell electric truck (FCET) by investigating the carbon emission implications of FCETs, particularly with focus on hydrogen as a prospective fuel for the trucking industry in the United States. Our analysis begins with the rationale for considering hydrogen, highlighting its potential to mitigate life cycle emissions as compared to conventional fuels.

We delve into various hydrogen production methods, ranging from grey hydrogen to renewable sources, each carrying distinct carbon footprints. Emphasis falls on the CO2 emissions associated with manufacturing fuel cell vehicles, pinpointing significant contributions from components including fuel cell stacks and hydrogen storage tanks. Furthermore, we project total CO2 emissions throughout the operation of a truck, drawing comparative insights with its battery electric and diesel truck counterparts.

Growth Opportunity Universe

  • Growth Opportunity 1: CO2 Emissions Tracking
  • Growth Opportunity 2: Geographic-specific Vertical Integration for Battery and Fuel Cell Manufacture
  • Growth Opportunity 3: Hydrogen Infrastructure Expansion

Key Topics Covered:

Transformation in CO2 Emissions from the Fuel Cell Electric Truck Industry

  • Why is it Increasingly Difficult to Grow?
  • The Strategic Imperative
  • The Impact of the Top Three Strategic Imperatives on the CO2 Emissions of Fuel Cell Electric Truck (FCET) Industry

Growth Environment: Hydrogen Ecosystem

  • Hydrogen is the Fuel of the Future
  • Life Cycle CO2 Flow of a Fuel Cell Electric Truck
  • Different Methods of Producing Hydrogen

Ecosystem

  • Research Scope
  • Powertrain Technology Segmentation

Growth Generator

  • Growth Drivers
  • Growth Restraints

CO2 Emission Trail During Hydrogen Production

  • Analysis of Major Hydrogen Production Methods
  • Key Factors Impacting Adoption of H2 Production Methods
  • Factor 1: Lower CO2 Emissions & Readiness Levels
  • Factor 2: Clean Hydrogen Programs and Targets
  • Factor 3: States' H2 Production Potential & Plan
  • Adoption Forecast of H2 Production in California
  • Adoption Forecast of H2 Production in the Southwest
  • Adoption Forecast of H2 Production in Texas
  • CO2 Emission Trail from H2 Production

CO2 Emission Trail During the Manufacture of a Fuel Cell Electric Truck

  • Major Components of a Fuel Cell Electric Truck
  • Fuel Cell Stack
  • Hydrogen Storage Tanks
  • Battery
  • CO2 Emission Trail: Manufacture of an FCET

Growth Generator: CO2 Emission Trail During Operation of an FCET: LDT

  • LDT Use Case Characteristics and Forecast Assumptions
  • LDT Cycle A & H - H2 Consumption and CO2 Emissions
  • LDT Cycle A to H - kgCO2 Per Mile

Growth Generator: CO2 Emission Trail during Operation of an FCET: MDT

  • MDT Use Case Characteristics and Forecast Assumptions
  • MDT Cycle A & H - H2 Consumption and CO2 Emissions
  • MDT Cycle A to H - kgCO2 per Mile

Growth Generator: CO2 Emission Trail during Operation of an FCET: HDT

  • HDT Use Case Characteristics and Forecast Assumptions
  • HDT - Cycle A
  • HDT - Cycle H
  • HDT Cycle A to H - kgCO2 Per Mile

CO2 Emission Trail Comparison between ICE Vehicles, BEVs, and FCEVs

  • LDT: ICE, BEV, and FCEV Comparison (Cycle A & H)
  • MDT: ICE, BEV, and FCEV Comparison (Cycle A & H)
  • HDT: ICE, BEV, and FCEV Comparison (Cycle A & H)

Key Takeaways

  • Top 3 Takeaways

Best Practices Recognition

For more information about this report visit https://www.researchandmarkets.com/r/h6tk37

About ResearchAndMarkets.com

ResearchAndMarkets.com is the world's leading source for international market research reports and market data. We provide you with the latest data on international and regional markets, key industries, the top companies, new products and the latest trends.

Contacts

ResearchAndMarkets.com

Laura Wood, Senior Press Manager

press@researchandmarkets.com



For E.S.T Office Hours Call 1-917-300-0470

For U.S./ CAN Toll Free Call 1-800-526-8630

For GMT Office Hours Call +353-1-416-8900

Data & News supplied by www.cloudquote.io
Stock quotes supplied by Barchart
Quotes delayed at least 20 minutes.
By accessing this page, you agree to the following
Privacy Policy and Terms and Conditions.
 
 
Copyright © 2010-2020 SantaClara.com & California Media Partners, LLC. All rights reserved.